00%125%150%200%300%400%Chapter 3 Position Analysis A s s t . P r o f . Mohammed show annotation

Positional Analysis

d Analytical Position Analysis❑ Graphical ➒By drawing the mechanism to sca show annotation

Graphical Position Analysis

i sA Dπœƒ3πœƒ2 πœƒ4Hedaya, M.33.2. Definitions ❑ Position𝑅𝐴𝑂 =π‘…π΄βž’Polar: show annotation

Vectors

a, M.53.2. Definitions (cont.)❑ Motion ➒Translation𝑅𝐡2𝐡1 =𝑅𝐴2𝐴1M show annotation

Motion

οΏ½1A1B’1𝑅𝐡2𝐡1β€²Hedaya, M.83.3. Complex numbers versus vectors ❑ 𝑅𝐴 =𝑅𝐴❑ 𝑅𝐴 =𝑅𝐴cosπœƒ+οΏ½ show annotation

Complex Numbers

cosπœƒπ‘…π΄sinπœƒyAHedaya, M.93.4. Vector Loop Equation ❑ The closed loop of vector = ze show annotation

Vector Loop Equation