00%125%150%200%300%400%Chapter 3 Position Analysis A s s t . P r o f . Mohammed show annotation
d Analytical Position Analysisβ Graphical β’By drawing the mechanism to sca show annotation
i sA Dπ3π2 π4Hedaya, M.33.2. Definitions β Positionπ π΄π =π π΄β’Polar: show annotation
a, M.53.2. Definitions (cont.)β Motion β’Translationπ π΅2π΅1 =π π΄2π΄1M show annotation
οΏ½1A1Bβ1π π΅2π΅1β²Hedaya, M.83.3. Complex numbers versus vectors β π π΄ =π π΄β π π΄ =π π΄cosπ+οΏ½ show annotation
cosππ π΄sinπyAHedaya, M.93.4. Vector Loop Equation β The closed loop of vector = ze show annotation