AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

SPECIALIZED ENGINEERING PROGRAMS, MECHANICAL ENGINEERING PROGRAMS

Tutorial 2

MDP 212 Mechanics of Machines

Instructor Name: Dr. M.M. Hedaya,

- 2.1 Design a double slider mechanism to draw an ellipse with major and minor axes equal to 18 cm and 6 cm respectively.
- 2.2 Design a slider mechanism to produce a stroke equal to 10 cm with quick return ratio 7:8.
- 2.3 Design an aligned quick return mechanism to produce an oscillating angle equal to 60°, the radius of the crank is 10 cm. Determine the time ratio.
- 2.4 Design a mechanism to produce a harmonic motion with an amplitude of 5 cm .
- 2.5 For each of the following dimensions, find the range of values for the unknown links if the linkage will act a) Crank rocker.
 - b) Drag mechanism.
 - c) Double rocker.

	\mathbf{r}_1	r ₂	r3	r4
а		100	300	360
b	80	220	120	
с	100	200		250

- 2.6 Design a four-bar mechanism that converts continuous rotation into oscillating motion (crank rocker mechanism).
 - Given that the crank length $r_2 = 100 \text{ mm}$, coupler length $r_3 = 200 \text{ mm}$ and follower length $r_4 = 300 \text{ mm}$.
 - a) Find the range of the fixed link r1 to get a crank rocker linkage.
 - b) Determine the specific value of r1 such that the transmission angle larger than 45°.
 - c) Calculate the stroke of the follower and determine the time ratio of the linkage.
- 2.7 Design a four-bar mechanism to drive link AB, 6 cm long to oscillate about fixed hinge A, with 40° rocking angle.

Tutorial 2 MDP 212 Mechanics of Machines

Instructor Name: Dr. M.M. Hedaya,

2.8 The windshield wiper shown is derived by a four-bar mechanism connected to its extension. Design a mechanism to derive the link OB with 70 ° rocking angle, where the forward time to return time is 1.25: 1. The length of OB is 5 cm.

2.9 Design a four-bar mechanism to move the shown object from position 1 to position 2, where the times for go and return are equal. Consider the output is the rocker.

- 2.10 Resolve problem 2.9, where the ratio between the forward time to return time is 1.25: 1.
- 2.11 Resolve problem 2.9 using the coupler as the output and add a mechanism to derive one of the rockers.

Tutorial 2

		_
	MDP 212 Mechanics of Machines	

- Instructor Name: Dr. M.M. Hedaya,
- 2.12 Design a four-bar mechanism to move link AB, 5cm length, between the three shown positions with equal time. Design another four-bar mechanism to drive the rocking mechanism.
- 2.13 Resolve problem 2.12 considering that the rocking hinges should be O and Q.

2.14 Design a four-bar mechanism to give the three positions shown in the following figure. Add a driver dyad to limit its motion to thr rsnge of positions designed, making it asixbar.All fixed pivots should be on the base.

Tutorial 2 MDP 212 Mechanics of Machines

Instructor Name: Dr. M.M. Hedaya,

2.15 Design a four-bar mechanism to give the three positions shown in the following figure using shown fixed pivots. The shown mechanism is drawn with its real dimension.

